Sign Up
..... Connect Australia with the world.
Categories

Posted: 2022-03-09 16:53:43
  • Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

    ADS  CAS  Google Scholar 

  • Wang, J. et al. Optical generation of high carrier densities in 2D semiconductor heterobilayers. Sci. Adv. 5, eaax0145 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W., Lu, X., Dubey, S., Devenica, L. & Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020).

    ADS  CAS  Google Scholar 

  • Kremser, M. et al. Discrete interactions between a few interlayer excitons trapped at a MoSe2–WSe2 heterointerface. Npj 2D Mater. Appl. 4, 8 (2020).

    CAS  Google Scholar 

  • Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • Liu, X. & Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019).

    ADS  Google Scholar 

  • Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    CAS  Google Scholar 

  • Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004 (2018).

    ADS  CAS  Google Scholar 

  • Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    ADS  CAS  Google Scholar 

  • Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    ADS  CAS  Google Scholar 

  • Karni, O. et al. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Phys. Rev. Lett. 123, 247402 (2019).

    ADS  CAS  Google Scholar 

  • Zhang, L. et al. Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Phys. Rev. B 100, 041402 (2019).

    ADS  CAS  Google Scholar 

  • Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

    ADS  CAS  Google Scholar 

  • Wu, F., Lovorn, T. & MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 97, 035306 (2018).

    ADS  CAS  Google Scholar 

  • Jin, C. et al. Identification of spin, valley and moiré quasi-angular momentum of interlayer excitons. Nat. Phys. 15, 1140–1144 (2019).

    CAS  Google Scholar 

  • Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    ADS  CAS  Google Scholar 

  • Gillen, R. & Maultzsch, J. Interlayer excitons in MoSe2/WSe2 heterostructures from first principles. Phys. Rev. B 97, 165306 (2018).

    ADS  CAS  Google Scholar 

  • Shabani, S. et al. Deep moiré potentials in twisted transition metal dichalcogenide bilayers. Nat. Phys. 17, 720–725 (2021).

    CAS  Google Scholar 

  • Man, M. K. L. et al. Experimental measurement of the intrinsic excitonic wave function. Sci. Adv. 7, eabg0192 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, S. et al. Direct measurement of key exciton properties: energy, dynamics, and spatial distribution of the wave function. Nat. Sci. 1, e10010 (2021).

    Google Scholar 

  • Wallauer, R. et al. Momentum-resolved observation of exciton formation dynamics in monolayer WS2. Nano Lett. 21, 5867–5873 (2021).

    ADS  CAS  Google Scholar 

  • Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 20, 945–950 (2021).

    ADS  CAS  Google Scholar 

  • Madéo, J. et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors. Science 370, 1199–1204 (2020).

    ADS  Google Scholar 

  • Schönhense, G., Medjanik, K. & Elmers, H.-J. Space-, time- and spin-resolved photoemission. J. Electron. Spectrosc. Relat. Phenom. 200, 94–118 (2015).

    Google Scholar 

  • Medjanik, K. et al. Direct 3D mapping of the Fermi surface and Fermi velocity. Nat. Mater. 16, 615–621 (2017).

    ADS  CAS  Google Scholar 

  • Kunstmann, J. et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys. 14, 801–805 (2018).

    CAS  Google Scholar 

  • Moser, S. An experimentalist’s guide to the matrix element in angle resolved photoemission. J. Electron. Spectrosc. Relat. Phenom. 214, 29–52 (2017).

    CAS  Google Scholar 

  • Beaulieu, S. et al. Revealing hidden orbital pseudospin texture with time-reversal dichroism in photoelectron angular distributions. Phys. Rev. Lett. 125, 216404 (2020).

    ADS  CAS  Google Scholar 

  • Rustagi, A. & Kemper, A. F. Photoemission signature of excitons. Phys. Rev. B 97, 235310 (2018).

    ADS  CAS  Google Scholar 

  • Ohnishi, H., Tomita, N. & Nasu, K. Direct determination of exciton wavefunction amplitudes by the momentum-resolved photo-electron emission experiment. Int. J. Mod. Phys. B 32, 1850094 (2017).

    ADS  Google Scholar 

  • Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    ADS  CAS  Google Scholar 

  • Mahmood, F. et al. Selective scattering between Floquet–Bloch and Volkov states in a topological insulator. Nat. Phys. 12, 306–310 (2016).

    CAS  Google Scholar 

  • Cui, X. et al. Transient excitons at metal surfaces. Nat. Phys. 10, 505–509 (2014).

    CAS  Google Scholar 

  • Liu, E. et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature 594, 46–50 (2021).

    ADS  CAS  Google Scholar 

  • Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).

    ADS  CAS  Google Scholar 

  • Rohlfing, M. & Louie, S. G. Electron–hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000).

    ADS  CAS  Google Scholar 

  • Meckbach, L., Stroucken, T. & Koch, S. W. Giant excitation induced bandgap renormalization in TMDC monolayers. Appl. Phys. Lett. 112, 061104 (2018).

    ADS  Google Scholar 

  • Sun, D. et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 14, 5625–5629 (2014).

    ADS  CAS  Google Scholar 

  • Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    ADS  CAS  Google Scholar 

  • Brown, D. Decentering distortion of lenses. Photogramm. Eng. 32, 444–462 (1966).

  • Xian, R. P., Rettig, L. & Ernstorfer, R. Symmetry-guided nonrigid registration: the case for distortion correction in multidimensional photoemission spectroscopy. Ultramicroscopy 202, 133–139 (2019).

    CAS  Google Scholar 

  • Ye, Z. et al. Efficient generation of neutral and charged biexcitons in encapsulated WSe2 monolayers. Nat. Commun. 9, 3718 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Google Scholar 

  • Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36–44 (2015).

    ADS  CAS  MATH  Google Scholar 

  • Ismail-Beigi, S. Truncation of periodic image interactions for confined systems. Phys. Rev. B 73, 233103 (2006).

    ADS  Google Scholar 

  • Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    ADS  CAS  Google Scholar 

  • Cooper, V. R. Van der Waals density functional: an appropriate exchange functional. Phys. Rev. B 81, 161104 (2010).

    ADS  Google Scholar 

  • Deslippe, J. et al. BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 183, 1269–1289 (2012).

    ADS  CAS  Google Scholar 

  • da Jornada, F. H., Qiu, D. Y. & Louie, S. G. Nonuniform sampling schemes of the Brillouin zone for many-electron perturbation-theory calculations in reduced dimensionality. Phys. Rev. B 95, 035109 (2017).

    ADS  Google Scholar 

  • Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    ADS  CAS  Google Scholar 

  • Zhang, C. et al. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • View More
    • 0 Comment(s)
    Captcha Challenge
    Reload Image
    Type in the verification code above