Lee, V. W., Twu, N. & Kymissis, I. Micro-LED technologies and applications. Inf. Disp. 32, 16–23 (2016).
Zhan, T., Yin, K., Xiong, J., He, Z. & Wu, S.-T. Augmented reality and virtual reality displays: perspectives and challenges. iScience 23, 101397 (2020).
Gong, Z. Layer-scale and chip-scale transfer techniques for functional devices and systems: a review. Nanomaterials (Basel) 11, 842 (2021).
Wu, Y., Ma, J., Su, P., Zhang, L. & Xia, B. Full-color realization of micro-LED displays. Nanomaterials (Basel) 10, 2482 (2020).
Marinov, V. R. 52-4: Laser-enabled extremely-high rate technology for µLED assembly. SID Symp. Dig. Tech. Pap. 49, 692–695 (2018).
Bower, C. A. et al. Emissive displays with transfer-printed assemblies of 8 µm x 15 µm inorganic light-emitting diodes. Photon. Res. 5, A23–A29 (2017).
Chun, J. et al. Vertically stacked color tunable light-emitting diodes fabricated using wafer bonding and transfer printing. ACS Appl. Mater. Interfaces 6, 19482–19487 (2014).
Kang, C.-M. et al. Monolithic integration of AlGaInP-based red and InGaN-based green LEDs via adhesive bonding for multicolor emission. Sci. Rep. 7, 10333 (2017).
Kang, C.-M. et al. Hybrid full-color inorganic light-emitting diodes integrated on a single wafer using selective area growth and adhesive bonding. ACS Photonics 5, 4413–4422 (2018).
Jin, H. et al. Vertically stacked RGB LEDs with optimized distributed Bragg reflectors. Opt. Lett. 45, 6671–6674 (2020).
Li, L. et al. Transfer-printed, tandem microscale light-emitting diodes for full-color displays. Proc. Natl Acad. Sci. USA 118, e2023436118 (2021).
Mun, S.-H. et al. Highly efficient full-color inorganic LEDs on a single wafer by using multiple adhesive bonding. Adv. Mater. Interfaces 8, 2100300 (2021).
El-Ghoroury, H. S., Chuang, C.-L. & Alpaslan, Z. Y. 26.1: Invited paper: quantum photonic imager (QPI): a novel display technology that enables more than 3D applications. SID Symp. Dig. Tech. Pap. 46, 371–374 (2015).
Yadavalli, K., Chuang, C.-L. & El-Ghoroury, H. Monolithic and heterogeneous integration of RGB micro-LED arrays with pixel-level optics array and CMOS image processor to enable small form-factor display applications. In Proc. SPIE 11310, Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) (eds Kress, B. C. & Peroz, C.) 113100Z (SPIE, 2020).
Ayari, T. et al. Wafer-scale controlled exfoliation of metal organic vapor phase epitaxy grown InGaN/GaN multi quantum well structures using low-tack two-dimensional layered h-BN. Appl. Phys. Lett. 108, 171106 (2016).
Li, X. et al. Large-area two-dimensional layered hexagonal boron nitride grown on sapphire by metalorganic vapor phase epitaxy. Crystal Growth Des. 16, 3409–3415 (2016).
Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).
Kim, H. et al. Impact of 2D–3D heterointerface on remote epitaxial interaction through graphene. ACS Nano 15, 10587–10596 (2021).
Kim, H.-s et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proc. Natl Acad. Sci. USA 108, 10072–10077 (2011).
Kim, T.-i et al. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. Small 8, 1643–1649 (2012).
LaValle, S. M. Virtual Reality (Cambridge Univ. Press, 2016).
Kum, H. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2, 439–450 (2019).
Cheng, J.-H., Wu, Y. S., Peng, W. C. & Ouyang, H. Effects of laser sources on damage mechanisms and reverse-bias leakages of laser lift-off GaN-based LEDs. J. Electrochem. Soc. 156, H640 (2009).
Jiang, J. et al. Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nat. Commun. 10, 4145 (2019).
Journot, T. et al. Remote epitaxy using graphene enables growth of stress-free GaN. Nanotechnology 30, 505603 (2019).
Bae, S.-H. et al. Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy. Nat. Nanotechnol. 15, 272–276 (2020).
Chang, H. et al. Graphene-driving strain engineering to enable strain-free epitaxy of AlN film for deep ultraviolet light-emitting diode. Light Sci. Appl. 11, 88 (2022).
Chen, Z. et al. Improved epitaxy of AlN film for deep-ultraviolet light-emitting diodes enabled by graphene. Adv. Mater. 31, 1807345 (2019).
Ryou, J. et al. Control of quantum-confined Stark effect in InGaN-based quantum wells. IEEE J. Sel. Top. Quantum Electron. 15, 1080–1091 (2009).
Chen, J. & Packard, C. E. Controlled spalling-based mechanical substrate exfoliation for III-V solar cells: a review. Sol. Energy Mater. Sol. Cells 225, 111018 (2021).
Zhang, B., Luo, C. & Li, Y.-F. Damage-free transfer of GaN-based light-emitting devices and reuse of sapphire substrate. ECS J. Solid State Sci. Technol. 9, 065019 (2020).
Bauhuis, G. J. et al. Wafer reuse for repeated growth of III–V solar cells. Prog. Photovolt. 18, 155–159 (2010).
Kim, H. et al. Multiplication of freestanding semiconductor membranes from a single wafer by advanced remote epitaxy. Preprint at https://arxiv.org/abs/2204.08002 (2022).
Day, J. et al. III-nitride full-scale high-resolution microdisplays. Appl. Phys. Lett. 99, 031116 (2011).
Meng, W. et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 16, 1231–1236 (2021).
Ludovic, D. et al. Processing and characterization of high resolution GaN/InGaN LED arrays at 10 micron pitch for micro display applications. In Proc. SPIE 10104, Gallium Nitride Materials and Devices XII (eds Chyi, J.-I. et al.) 1010422 (SPIE, 2017).
Chen, G.-S., Wei, B.-Y., Lee, C.-T. & Lee, H. Y. Monolithic red/green/blue micro-LEDs with HBR and DBR structures. IEEE Photonics Technol. Lett. 30, 262–265 (2018).
Park, J. et al. Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses. Nat. Photon. 15, 449–455 (2021).
Carlson, A., Bowen, A. M., Huang, Y., Nuzzo, R. G. & Rogers, J. A. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24, 5284–5318 (2012).
Forrest, S. R., Bradley, D. D. C. & Thompson, M. E. Measuring the efficiency of organic light-emitting devices. Adv. Mater. 15, 1043–1048 (2003).









Add Category